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Abstract

The widespread adoption of alkaline zinc-based secondary systems has been hindered
by two inherent problems associated with the charge reaction. These are commonly
referred to as shape change and dendrite growth. This review examines the attempts
that have been made to lessen their effects and, hence, ultimately arrive at a working,
cycleable secondary zinc-based battery.

Introduction

The reactions and electrochemistry of zinc in alkaline electrolytes have
been the subject of a number of previous reviews [1—6]. Some of the properties
that make zinc such an attractive material in primary form have, however,
hindered its adoption in secondary systems, the main cause being the high
solubility of zinc in the strong alkaline electrolytes normally employed in
these systems. The problem manifests itself in two main forms of failure
mechanism, i.e., shape change (a redistribution of active material, culminating
in capacity losses), and dendritic growth, promoting eventual cell failure due
to short circuiting. These drawbacks lead to poor cycle life, particularly when
compared with traditional rival systems such as lead—acid and nickel-cadmium.

Considerable research effort has been spent on discovering ways of
either eliminating, or at least minimising, the effects of these problems. The
research can be divided into four distinct categories, viz.,

(i) Additions to the electrode.

(ii) Additions to the electrolyte.

(iii) Development and improvement of separators.

*Author to whom correspondence should be addressed. Now at the Institute of Polymer
Technology and Materials Engineering.
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(iv) Miscellaneous techniques such as pulse charging, electrode vibration

and flowing electrolyte,

This review will attempt to indicate which methods have found most
favour in the battery industry in recent years. Although it must be noted
that many of the approaches have been employed, in some form or another,
for several years. At the same time, the electrochemistry and theory behind
certain methods will be explained.

Electrode additions

The incorporation of an additive within the active material of the electrode
during its fabrication, is an extensively used method of zinc cycle-life
enhancement. One of the most commonly used additives, in both primary
and secondary systems, is that of mercury [2, 7, 8]. It has long been known
that in aqueous alkali, dissolution of zinc and the evolution of hydrogen
occur simultaneously as the anodic and cathodic reactions responsible for
‘self-discharge’. This corrosion of the zinc active material is obviously det-
rimental to the performance of the battery, causing a reduction in capacity
that must be minimised. This can be achieved by the addition of an inhibitor
which possesses a hydrogen overvoltage which is higher than that of zinc.
Mercury is one such additive chosen to perform this role, typically as 1—-4%
of the paste weight in the form of HgO. For the purpose of inhibiting self-
discharge, mercury has been found to be extremely effective [8§—11]. Un-
fortunately, the effect of amalgamation has also been found to be detrimental
on the cycling performance of zinc anodes. In particular, it has been reported
that the rate of shape change increases with the addition of this metal. Thus,
a considerable amount of research has been undertaken into finding a suitable
substitute for mercury that would also be capable of reducing the rate of
self-discharge whilst maintaining or reducing that of shape change [11, 12].

The effect of various additives in pasted zinc electrodes has been studied
in great detail by McBreen and Gannon [13, 14]. They found that the most
successful additives were heavy metals (e.g., Pb, Cd, T1 and In) added to
the paste mix in the form of their oxide/hydroxides (which are reduced to
the metal prior to the reduction of zincate). The beneficial effect of these
additives on shape change was attributed to a substrate effect, and that
additives such as PbO, In(OH); and T1,0; increase the polarisability of the
electrode which, in turn, improves current distribution and decreases shape
change. The adverse effect of HgO was attributed to a decrease in polarisability.

Himy and Wagner {11, 12] also found that lead, cadmium and thallium
decreased shape change, in agreement with the results of McBreen and
Gannon [13, 14]. In addition, they performed tests on paste formulations
which contained two additives. Using such mixtures shape change was
considerably decreased, due to a synergistic relationship occurring with these
binary compounds. Despite these findings, and the drawbacks associated
with it, mercury still finds a high level of use due to its excellent corrosion
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inhibiting properties, the latter usually outweighing any deleterious effects
on shape change. However, there is currently a trend amongst battery
manufacturers to replace mercury with other metals such as thallium and
indium [11-13] (see Table 1).

Another series of additives which has received attention in recent years
is that of the alkaline-earth-metal oxides or hydroxides. Of these the most
promising, at the present time, is calcium. The chemistry of zinc electrodes
containing calcium hydroxide has been the subject of many investigations
{15-20]. The improvement in cycle life observed in calcium-containing
electrodes can be attributed to the formation of calcium zincate,
Ca(OH), - 2Zn(0OH), - 2H,0, which is insoluble [18]. Thus, the migration of
zincate away from the electrode is minimised, which, in turn, decreases shape
change. However, the incorporation of Ca(OH), can result in a decrease in
zinc utilisation, and it has been reported that for optimum efficiency the
molar ratio of Ca(OH), to ZnO must be greater than 0.5 to 1.0 [19]. Magnesium
and aluminjum hydroxides are also thought to function in a similar manner
to calcium, i.e., by forming an insoluble species which prevents migration
of the zincate species. Another electrode additive which has been found to
give beneficial effects on cycling is bismuth oxide at up to 10% Bi,O5 [21-23].
McBreen and Gannon [21] suggested that one reason for this improvement
is that the crystal growth at the electrode surface is influenced by the bismuth
to such an extent that an active deposit is made and maintained. In conjunction
with this, it was also suggested that bismuth provides a conductive matrix
of needle-like deposits, within the electrode during cycling, hence preventing
densification. One final series of inorganic additives to receive attention in
recent years is that of titanium salts, usually as the oxide or titanate [24,
25]. In particular, Berchelli and Chireau [24] patented an electrode that
specified using between 0.2 and 1.8 wt.% of titanate mixed homogeneously
throughout the electrode in the form of fibres that also improve the mechanical
strength. Charkey [25] observed that potassium titanate created a stable
concentration gradient of Zn(OH),?~ within the electrode pores, and as such
resulted in improved capacity retention.

Organic additions have also received considerable attention during recent
years, and of these polymeric additives have dominated. Their main advantages
are essentially mechanical, i.e., binding the electrode, and also structural by
providing a stable network to retain the zinc active material, thus slowing
shape change. The most extensively used polymeric addition is that of
polytetrafluoroethylene, PTFE [26-29]. Small additions of this polymer have
been shown to engender a high degree of mechanical stability whilst still
maintaining an open network. Other polymer systems have been utilised,
though to a lesser extent. Of these, poly(vinyl alcohol) [2, 30] and
poly(ethylene) [31] have received the most attention. Hampson and McNeil
[32-34] have recently performed a large study of polymer-bound zinc elec-
trodes, observing both potential and cycle-life parameters. In high concen-
tration (i.e., > 10%) all polymers tend to shield the active material and as
a result reduce the electrode cycle life and capacity. Of the polymers studied
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by these workers only polycarbonate was found to be competitive with PTFE
in terms of cycle-life performance. The addition of a polymer alone does
not engender any electrical conductivity to the matrix. Therefore, other
additions have been made in order to rectify this situation. In particular
various carbons and graphites have been investigated for this purpose, due
to their conducting properties. Duffield {35-37] carried out work with graphite
additions and found that the cycle life could be significantly improved, in
contrast to results obtained by Sandera et al. [38]. Duffield attributed this
difference to the particle size of graphite used by Sandera, which was large
(150 pum). Duffield found that the smaller the particle size used, the better
the performance of the cell. He postulated that the beneficial effect was due
to a physical entrapment of soluble zincate species during discharge within
the electrode matrix. This occurs until a supersaturation takes place and
precipitation of zinc oxide follows. Thus it can be seen that the graphite/
PTFE matrix acts more as a retardant to shape change, rather than a complete
prevention (as zinc will eventually escape into the solution). Other organic
additives which have been successfully utilised in secondary zinc cells are
surface-active agents, such as emulphogenes [39]. These tend to reduce
shape change and densification by being adsorbed onto the zinc surface.

Electrolyte additions

An alternative way of improving the cycle life of the zinc electrode is
to incorporate additives in the electrolyte. It is obvious that in this situation
the concentration of the additive is also determined by its own solubility,
hence, with some materials, only small additions can be made. Consideration
must also be given to the effect that the additive will have on the performance
of the counter-electrode. Electrolyte additions promote improvements to cycle
life by similar mechanisms to those of electrode additions, namely: reduction
of electrode corrosion, shape change and dendritic growth. They are used
extensively in the metal-finishing industry to modify deposit characteristics.
One would therefore expect that the exchange of knowledge and information
from one technology to another would readily occur. However, this is true
to only a limited extent, as most plating baths operate at much less concentrated
alkaline solutions than those encountered in battery systems (e.g., 2 M sodium
hydroxide solution compared to 6—~7 M potassium hydroxide). This difference
helps explain why certain levellers and brighteners, which work exceedingly
well in the metal-finishing industry, fail to be of any significant use in modifying
zinc deposits in battery systems.

The addition of lead ions to the electrolyte has long been used as a
method of influencing the zinc deposit morphology. Mansfield and Gilman
[40] reported that lead inhibited the growth of dendrites by blocking the
sites which were active for dissolution and deposition, thus dissolution only
occurs at macroscopic crystal defects. The morphology of the deposit was
found to be affected by lead, in that it consisted of smooth, rounded dendrites
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on many small crystallites, as opposed to the classical side-branched mon-
ocrystal dendrites obtained in lead-free electrolyte. Diggle and co-workers
[41-43] found that the effectiveness of lead was potential dependent (sug-
gesting that the inhibiting species was partially charged), and at high enough
concentration (>10"* M) could totally suppress dendritic growth. Tin salts
have also been investigated in a similar way and have been found to exhibit
properties favourable for deposit morphology enhancement [44—46]. The
effect was attributed to blocking of active sites, similar to the mode of action
of lead. Lithium hydroxide is a very common addition to the electrolyte, to
extend the capacity of the nickel counter electrode. However, Flerov [47,
48] believed that the presence of LiOH also had a beneficial effect on the
zinc electrode, as it could stabilise supersaturated zincate solutions and
therefore prevent zinc passivation.

Numerous other electrolyte additives have been suggested, and their
respective patents applied for (see Table 2). These include: silicate [48-501,
ferro- or ferricyanide [51], phosphate [52-54], borate [52], arsenate [52]
and fluoride [54, 55]. Silicate is thought to inhibit the dissolution of zinc
by adsorbing it on to its surface, thus reducing the amount of charge needed
to cause passivation. The other additives listed above all cause a reduction
in the solubility of the discharged zincate species either by reducing the
number of free hydroxyl ions, as with the fluoride, or by causing precipitation
of zinc oxide in the vicinity of the electrode. Thornton and Carlson [56]
investigated a number of alternative electrolytes, and found that there were
no zinc anions which formed insoluble zinc compounds at pH values compatible
with nickel electrodes. They therefore suggested that the most useful elec-
trolytes were those which would have minimal hydroxy! concentration with
the maximum conductivity, usually achieved by the addition of highly soluble
salts such as phosphate, borate and fluoride. Nichols et al. [567] found that
by using fluoride and borate solutions the cycle-life capacity and shape
change could indeed be improved by use of such electrolytes. However,
increased cell resistance and lower electrode utilisation were also noted by
these workers. This compromise between cycle life and energy density must
thus play a part in the selection of additives.

Organic electrolyte additions have also been investigated. In particular
quaternary ammonium salts have been reported to influence zinc deposit
morphology [41, 42, 44, 58, 59]. The proposed mechanism for this action
suggests that the large organic cationic species undergo specific adsorption
at active growth centres, thus blocking deposition at these sites. The deposition
therefore occurs at other less favourable sites, hence producing a more even
deposit. This, in turn, leads to an improved cycle life through reduction in
dendritic growth. Other organic compounds that have been tested as electrolyte
additions include various surfactants [60, 61], thiourea [46, 62[ and
poly(ethylene glycol) [62, 63]. These probably function in a similar manner
to the quaternary ammonium salts.

One final modification that can be made to the electrolyte is the addition
of a cellulose- or starch-based derivative to cause a general gellation. The
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gelled electrolyte will inhibit the rapid movement of zincate species and this
should, in theory, cause a reduction in shape change and dendritic growth.
However, one major problem that may arise when using this system is that
the internal cell resistance may be significantly increased due to the reduced
ionic mobility. Primary zinc systems use gelled electrolytes extensively [2,
64], and so a transfer of technology should be possible.

Separators

Separator material is used in virtually all zinc battery systems, primarily
as a means of keeping the positive and negative electrodes apart. Initially
separators took the form of a cellulose film, usually wrapped around the
electrode two or three times. However, as time has progressed the use and
complexity of separator systems has developed to a point where multilayers
of differing materials are nowadays in common use. Broadly speaking though,
the basic functions of these systems still remain the same, namely, to act
as an electrolyte reservoir and wick, and to interpose a gap between the
two electrodes, thus preventing a short circuit. The selection of the correct
separator system is therefore of vital importance to the successful operation
of a battery. In addition to the basic requirements listed above, there are
also certain others which a separator must meet for successful operation.
These are: that it should be

(i) resistant to degradation by either the electrolyte and/or active

materials,

(i) high in ionic conductivity and low in electrical resistance,

(iii) effective in preventing migration of particles between electrodes,

(iv) easily wettable by the electrolyte, ,

(v) mechanically strong and flexible enough to withstand battery

fabrication,

(vi) preferably relatively inexpensive.

Lundquist [65] recently characterised the various types of separators
employed in Ni—Zn cells. A list of patented systems gleaned from the literature
is given in Table 3.

As previously mentioned, cellophane was the first material to be suc-
cessfully employed as a separator in a practical secondary silver—zinc cell
[66]. Unfortunately cellophane is not stable in alkaline solutions and it is
also prone to undergo oxidative degradation in silver—zinc cells, thus limiting
battery life and performance. Considerable research and development has
been undertaken into both improving the properties of cellulosic materials
and also finding suitable replacements. Modifications to the cellulose film
have included treatment with sodium borohydride [67]) to improve chemical
stability by reducing the number of aldehyde groups. Anti-oxidants such as
phenylene—diamine [68] have also been suggested as a method of improving
oxidation resistance.

The search for a suitable replacement for cellulose has progressed along
two distinct paths, one being the development of grafted and radiation cross-
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linked polyalkenes [67, 70], the other being the use of inorganic separators
[71-73]. The radiation polymers consist of a film of the polyalkene which
is then cross-linked to give a uniform three dimensional structure. This
creates a more tortuous pathway for any penetrating species, i.e., dendrite
bridging is delayed. Grafting of the film, and exposing it to radiation is
performed to increase conductivity in potassium hydroxide, and also oxidation
resistance. However, one disadvantage of these separators compared to
cellulose, is that they do not swell when wetted, which, in turn, allows the
electrodes themselves to expand on cycling, hence accelerating shape change.
Other non-cellulosic separator systems which have been proposed are
poly(vinyl alcohol) membranes [70]; these do swell in hydroxyl solutions to
form a dense gel, but their mechanical strength is poor and consequently
their use is mainly in conjunction with other systems. Polymer blends consisting
of an aromatic heterocyclic polymer and another polymer have also been
investigated with some reported success [74].

The final class of separator system which has been utilised in secondary
zinc systems is that of inorganic separators. These were developed mainly
for silver—zinc cells in space and military applications; their cost would
therefore prove prohibitive for everyday civilian use. Initially, rigid separators
were manufactured from aluminosilicate compositions [75], but it was soon
realised that flexible separators would have a much greater use and appeal.
The formulations for these were based upon those developed for the rigid
separators, but with a suitable polymer addition to engender flexibility. The
initial results showed that rigid separators give increased cycle life compared
to cellulose types, whereas flexible ones gave slightly less. Further work on
the later separators has since improved this situation somewhat.

The application of certain substances on the surface of the membrane
has also been suggested, i.e., the so-called ‘coated separators’ [76—79]. These
include a metallic-nickel coating on the zinc side of the separator, causing
the dendrites to be destroyed on contact with the nickel {76, 77]. However,
this method only delays penetration, it does not totally prevent it. Another
coated separator suggested, consists of a copolymer of acrylonitrile and poly
(vinyl chloride) with a coating of PVA containing inorganic additions [78].
This separator has been reported to be resistant to zincate ion penetration.

At present, the main direction of separator research is into the use of
combined systems, which are proving more effective than single separators.
However, although separators have progressed greatly with the research
dedicated to them, it is probably fair to say that they still have not advanced
far enough to meet all the requirements in terms of improving cycle life.

Other methods
One method of improving the cycle life of zinc batteries, which has

received increasing interest in recent years, is that of modifying the charging
current profile. This can be achieved by a variety of methods, viz., pulsing
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the current, superimposing a.c. current on d.c., periodically reversing the
current, and multi-component pulse charging. The reasons behind the use
of pulsed current charging for the prevention of dendrites has been summarized
by Bennion [80]. The application of a high current peak creates a high
surface overvoltage, and thus activates a large number of nucleation sites.
The following rest period allows local zinc concentration gradients to relax
by diffusion into the depleted diffusion layer. Thus a more uniform deposit
is obtained by electrodeposition from a replenished diffusion layer. Aroueté
et al. [81]reported that the effect of pulsed d.c. current on the electrodeposition
of zinc was to produce a thicker, more compact deposit by appropriate
choice of current density and the pulse on: off ratio. Smithrick [82] conducted
pulse current charging on zinc—nickel cells, but found no evidence of any
improvement over constant current charging. McBreen et al. [83] suggested
that at the frequencies employed by Smithrick, double layer effects eliminated
any advantages of diffusion relaxation. Wagner [84, 85] confirmed this result
stating an optimum frequency to be 5—8 Hz, and the rest: pulse ratio to be
3:1. Katz et al. [86] also reported similar results, observing a two-to-three-
fold improvement in capacity loss versus constant current charging. The
second modification to the charging regime that can be employed is the
superimposition of an a.c. current on a constant d.c. waveform. Chin and
Venkatesh [87] performed such experiments with the deposition of zinc from
an acidic zinc chloride solution, finding that the number of nucleation sites
increased with the pulse current. The third alternative, of reversing the current,
is only effective when the deposition is rate determining. When the reaction
is activation controlled, little or no effect is obtained. Obviously, the deposition
period must last longer than the dissolution one in this method.

The final method of modifying the charging waveform is to use a multi-
component pulse current. This consists of a deposition current, a dissolution
current and a rest period. Appelt and Jurewicz [88, 89] and also Binder and
Kordesh [90] have claimed beneficial effects when using such a waveform.
It must be remembered, however, that the time required for charging when
using these modified waveforms is much longer than when using constant
current—in the case of the optimised pulse current suggested by Wagner
and Almerini [85], this can be four times longer.

Other miscellaneous ways of improving cell performance are vibrating
the electrode [91, 92] and flowing (or pumping) the electrolyte. The patented
‘Vibrocel’ [93] has not found commercial success, probably due to the expense
in the construction of the cell. Flowing electrolytes are utilised in zinc-halogen
cells, but not in alkaline ones [5]. The mechanism by which both of the
above operate is mass transport enhancement, also any dendrites formed
tend to be broken off by the agitation/circulation of electrolyte.

Conclusions

This review has outlined the practical attempts that have been undertaken
to alleviate both shape change and dendritic growth in zinc-based secondary
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cells. The three main methods of reducing these drawbacks, namely, electrode
additions, electrolyte additions, and separators all show promise. Electrode
additions generally function by limiting the migration of zinc species from
the vicinity of the zinc anode during discharge or by improving the current
distribution on charging. The former may be achieved by physical entrapment
or by localised precipitation of zinc-containing species. Electrolyte additions
generally function in one of two ways. They either enhance the charging
reaction by promoting a more ordered zinc electrodeposition or they inhibit
the dissolution of the zinc during discharge by either adsorption or by reducing
the solubility of discharged zincate species. Separator materials function by
providing a barrier to discharged zinc species whilst still allowing the passage
of charge. The two are not mutually exclusive but do make the choice of
separator material critical. Present day materials are complex, often laminated
in structure, forming a separator system rather than a single layer.

Clearly, the drive to limit dendritic growth and shape change is still
continuing and if eventually successful, will probably lead to a functional,
cycling, secondary zinc-anoded cell. At present polymeric electrode additions
such as PTFE [26-29] appear promising, whilst electrolyte additions such
as borate, phosphate, silicate, etc. [48—55] can inhibit dissolution or reduce
the solubility of discharged species and thus make passivation more favourable.
Clearly, this could lead to reduced utilisation which could be alleviated by
increased electrode porosity. Zinc ions which are lost to the solution can
be electrodeposited in a more coherent manner with the use of addition
agents such as quaternary ammonium compounds {41, 42, 44, 58, 59]. At
present none of the main methods to improve zinc cyclability seems to be
totally successful, and perhaps the answer lies in a combined approach of
all three methods as typified by the work of Sato et al. [78].
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